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Abstract 

We study formation of the Vibrational Distribution Function (VDF) in a molecular gas at low pressure, when 

vibrational levels are excited by electron impact and deactivated in collisions with walls and show that this problem 

has a convenient analytical solution that can be used to obtain VDF and its dependence on external parameters. The 

VDF is determined by excitation of vibrational levels by an external source and deactivation in collisions with the 

wall. Deactivation in wall collisions is little known process. However, we found that the VDF is weakly dependent 

on the functional form of the actual form of probability   →  for a vibrational number   to transfer into a lower 

level    at the wall. Because for a given excitation source of vibrational states, the problem is linear the solution for 

VDF involves solving linear matrix equation. The matrix equation can be easily solved if we approximate 

probability, in the form: (1 ) ( )      →
  −= . In this case, the steady-state solution for VDF( ) simply 

involves a sum of source rates for levels above  , with a factor of 1 ( +1) . As an example of application, we 

study the vibrational kinetics in a hydrogen gas and verify the analytical solution by comparing with a full model.  
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Vibrational kinetics is important for many applications such as negative ion sources, plasma processing, 

and in the general area of surface (heterogeneous) catalysis. In this letter we are focused on the pressure 

range, generally, below 100 mTorr where the Vibrational Distribution Function (VDF) of a molecular gas 

is determined by balance of electron-impact excitation and deactivation in collisions with the chamber 

wall. As an example, we study the vibrational kinetics of H2 with application to negative ion sources, but 

the treatment can be employed in other applications. 

Negative Hydrogen Ion Sources (NHIS) are needed for producing fast neutral beams for heating 

plasma in nuclear fusion reactors. Development of NHIS for such neutral-beam heating systems requires 

an efficient generation of H- ions in low-pressure plasmas. A detailed review of negative hydrogen ion 

production mechanisms can be found in a recent paper by Bacal et al. [1]. The presence of vibrationally 

excited 
2

H  molecules in hydrogen discharges enhances the production of negative ions through the 

process of dissociative attachment [2,3]. A population of 
2

H  molecules in higher vibrational states is 

necessary to increase production of negative ions [4,5]. Therefore, since 1970s, the studies were focused 



2 

 

on the vibrational kinetics of 
2

H  plasmas [6,7]. The production and loss mechanisms for excited states 

include volume reactions and interactions with chamber walls. An important process is deactivation of 

vibrational level at the wall surface to form a lower state, i.e., relaxation ' → , with 0    . The 

probabilities   →  for this process were originally calculated by Hiskes and Karo [8] using molecular-

trajectory simulations. Experimental measurements of repopulation probability distributions were initially 

reported by Stutzin et al. in unpublished conference proceedings [9]. Their data was published by Hiskes 

and Karo [10 ] and has been since widely adopted in modeling H2 discharges. Examples of VDF 

simulations using global-model approach are given in publications [11-15]. In such calculations, it is 

difficult to decouple the combined effects of different kinetic processes responsible for forming the VDF. 

Hence it is not transparent which factors predominantly affect the shape of the resulting H2 vibrational 

spectrum.  

In this letter, we develop a convenient analytical solution for vibrational distribution function of 

molecules colliding with a wall; we call it a Reduced Linear Model (RLM) of vibrational kinetics. RLM 

allows for a fast and straightforward VDF calculation and also enables analysis of contribution of 

different kinetic processes into the VDF formation.  

 In our previous study [16], a benchmarked and validated Global Model for Negative Hydrogen Ion 

Source (GMNHIS) has been developed. We benchmarked the GMNHIS against another independently 

developed code, Global Enhanced Vibrational Kinetic Model (GEVKM) [14] and validated the GMNHIS 

using experimental measurement data obtained in an electron cyclotron resonance (ECR) discharge [17]. 

The GMNHIS code implements a quite comprehensive reaction set for vibrational kinetics in H2. For the 

present work, all reaction rates related to the creation and loss of vibrational levels are evaluated 

according to GMNHIS, and reactions with small contributions are neglected. The RLM of vibrational 

kinetics is derived for low-pressure NHIS through (a) reducing the reaction set of vibrational kinetics of 

2
H  molecules and (b) using approximate function for the repopulation probability 

(1 ) ( )      →
  −= . We show that such an approximation does not significantly affect the calculated 

VDF, but allows for significant simplifications. The simplified reaction set of vibrational kinetics of 
2

H  

molecules includes electron excitation of 
2

H ( 0) =  ground-state molecules to levels 
2

H ( 1 14) = −  

through a resonant mechanism (called eV process) and through an indirect mechanism followed by 

radiative decay (called EV process), and also wall relaxation (WR process) of a vibrational level   to a 

lower level   ( ) .  
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Figure 1. Schematics of the processes included in the RLM for the formation of VDF. 

 

Figure 1 illustrates the reduced set of processes for vibrational kinetics mentioned above. The 

number density of molecules in a given vibrational state is linearly dependent on the ground state  

2
H ( 0) =  through the source rate (eV and EV processes), and on the densities of molecules at higher 

vibrational levels due to wall collisions (WR process). The highest vibrational level 
2

H ( 14) =  is not 

produced in wall collisions (because there is no higher vibrational level) and, therefore, the densities of 

molecules at 
2

H ( 14) =  is only proportional to the density of 
2

H ( 0) = . The density of the second 

highest vibrational level, 
2

H ( 13) = , is given by a linear combination of the densities of 
2

H ( 0) =  and 

2
H ( 14) = , and so on. The densities of other remaining of vibrational levels can be calculated in the 

same way. Therefore, the densities of 
2

H ( 1 14) = −  satisfy a set of 14N =  linear equations with a 

triangular matrix in the form 

        
2 2WR, out H ( ) WR, H ( )

1

( ) ,      

 

  →

= +

= + − 
N

S k k n k n                                   (1) 

where the source rate 
2eV,0 EV,0 H (0)( + )  → →= eS k k n n  is given by the direct-excitation rate constants. In 

the RLM, the electrons are assumed to be at equilibrium, therefore the rate constants ( eV,0k →  and 

EV,0 k → ) are obtained under assuming a Maxwellian electron energy distribution. The rate constant for 

the wall relaxation processes is given, according to Chantry [18], as 

 

1
2

WR,

12
=

1th

RV
k

D Av R






−

  +
+  

−  
.                                           (2) 
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Here, Λ is the diffusion scale of the reactor vessel of volume V and surface area A, with gas diffusion 

coefficient D, and the mean thermal velocity thv , both of the latter independent on the vibrational number 

 ; R  is the reflection coefficient (the reflected flux is Maxwellian with a cosine-law angular 

dependence). The values of R  for 
2

H ( 1 14) = − , in the form exp( 1 ) = −R b , were calculated by 

Hiskes and Caro [8,10] (the quantities b  are collision frequencies if time is measured by the number of 

successive collisions with the wall). Gas-surface interactions are generally dependent on the material and 

temperature of the chamber wall. The cited-above molecular-trajectory calculations were performed for 

iron wall at 500 K and thus should be applicable to stainless-steel vacuum vessels. Note that the 

temperature dependence isn’t strong, because the energy of vibrational quantum (on the order of 0.1 eV) 

is high compared with the thermal energy of wall atoms (not much higher than 0.05 eV). The 

repopulation probabilities are normalized as 
1

=0

= 1


 



−

→



 .  

The rate constant outk  defines pumping (outflow) loss of the excited molecules out of the volume 

accounted for by the global model, e.g. they may escape with the outlet flow from the chamber. It must be 

mentioned that Eq. (2), initially derived for an enclosed chamber without any pumping, is only valid 

under the condition out WRk k ; however, such global models are often used even when the outflow is 

considerable such that out WRk k .   

Eq. (1) was introduced in Ref. [10] to study the dependence of predicted vibrational spectrum on the 

total repopulation probability 1 − R . Numerical solution of the matrix equation (1) is trivial, starting with 

 = N  and solving for lower levels one by one. A compact analytical solution is possible if the form of 

  →  is simplified. Having such solution would facilitate physical insight, as well as verification of 

complex numerical models, and is the focus of the present work. As noted above, the measured values of 

2
H  repopulation probabilities   →  currently in common use originate from results [9] reported 

originally in conference proceedings. These data are used even though there is no published record of 

experimental conditions and error bounds for the measurements. Given that considerable uncertainties are 

present in other basic inputs into the model (notably the cross-section values) utilized in Eq. (1), and the 

fact that the zero-dimension global model is approximate itself, we show that reasonable approximation 

for   →  does not degrade overall accuracy of the predictions for VDF.  

The experimental plots of   →  are shown in Fig. 2(a).  
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Figure 2: Repopulation probability   →  in wall collisions: (a) data provided in Ref. [9,10]; (b) 

approximate (1 ) ( )      →
  −=  proposed in this Letter. 

 

Because the   →  functions are smooth in the sense that the scale of the distribution is determined 

by the initial vibrational number  , and these functions enter Eq. (1) via summation, we propose to 

simply replace   →  with respective average values keeping the normalization, that is: 

(1 ) ( )      →
  −= . 

Subsuming above into Eq. (1) gives  

                         
2 2WR, out H ( ) WR, H ( )

1

1
( ) .    

  
 

= +

= + −



N

S k k n k n                             (3) 

We solve Eq. (3) analytically in Appendix A and the solution is  

 
2

1

WR, H ( ) 1 1

2 1

,
1

kN

k k n

k n

k n S S S
     

 


   



−

+ +

= + = +

 
= + + 

+  
                     (4) 

where 
WR,

WR, out







 =
+

k

k k
 and ( ) ( 1)n n n n = + + . In the case of pumping loss is not taken into 

account 1  = = , and the solution is  

 
2WR, H ( )

1

1
 + 

1

N

k

k

k n S S  
 = +

=
+
 .                                         (5)                            

The left-hand side of Eqs. (4) and (5) describes the volumetric loss (in m-3s-1) of excited molecules at 

the wall surface and the right hand side describes the volumetric source.  
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Henceforth, we will be considering the VDF predicted by Eq. (5) rather than the general solution 

given by Eq. (4) and we compare this solution to the results of our global-model simulation [16] with

out 0k . As evident from the solution given by Eq. (5), the resulting effect of wall collisions is given by 

a response function with respect to the source, 
( )

1

 



−

+

k
, which is a simple step function.  

Figure 2(b) shows the adopted probability (1 ) ( )      →
  −=  distribution for a vibrational level 

  to relax to lower states.  

Figures 3(a) and 3(b) show the corresponding linear response obtained by solving the respective 

elements of the inverse matrix, 1−
B , where the elements of B  are 

, ,B        →= − , corresponding to 

Eq. (1) with out 0k , for   →  data taken from the experimental study of Ref. [9] as reproduced in Ref. 

[10] shown in Fig. 2(a) and approximated by our model shown in Fig. 2(b), respectively. The values for 

1−
B  are almost constant values for a fixed row ( ) of 

1−
B and well approximated by 

( )

1

 



−

+

k
.   

Therefore, instead of using the tabulated values of   →  from Refs. [9,10] we could conveniently replace 

them simply with (1 ) ( )      →
  −= . 

 

  

Figure 3: Values of the row elements of the corresponding inverse matrix for Eq.(1) for initial   →  

(a) and approximate (1 ) ( )      →
  −=  (b). The diagonal elements, equal to unity, are not shown. 

 

In order to test the proposed analytical solution given by Eq. (5), VDFs were simulated using  

GMNHIS [16] with   →  from [9,10] and also (1 ) ( )      →
  −=  for two values of the gas pressure: 
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4 mTorr and 18 mTorr (accounting only for the reduced set of reactions considered in this Letter). The 

simulated VDFs are shown in Fig. 4. The results clearly show that the obtained VDFs nearly 

indistinguishable and the proposed substitution yield rather accurate VDF. 

 

Figure 4. VDFs obtained using GMNHIS with the reduced set of reactions considered here and 

  →  from Refs. [9,10], compared with VDFs obtained in simulations with (1 ) ( )      →
  −=  for 

two values of gas pressure: 4 mTorr and 18 mTorr. 

 

Figure 5. VDFs obtained using full GMNHIS and   →  from Refs. [9,10] and compared obtained 

VDF with simulations using (1 ) ( )      →
  −=  for two gas pressure values: 4 mTorr and 18 mTorr. 

 

Figure 5 also shows the VDFs obtained using full set of reactions accounted in GMNHIS with   →  

from [9,10] and also (1 ) ( )      →
  −=  for 4 mTorr and 18 mTorr. Again, the approximate 
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distribution (1 ) ( )      →
  −=  results in a nearly indistinguishable VDF. Comparing full simulation 

shown in Fig. 5 with reduced set shown in Fig. 4, we note that they agree well with each other except for 

the highest vibrational levels. This is because vibrational-translational relaxation in collisions with 

molecular hydrogen (VT) was ignored in the reduced set of equations. The VT process can affect the 

densities of very high vibrational states, but its effect is weakened with decreasing pressure. To 

demonstrate the difference Fig. 6 shows comparison of the VDFs obtained with full GMNHIS and the 

RLM (reduced set without taking the VT process into account).  

 

Figure 6. VDFs obtained using full GMNHIS and the RLM (reduced set without taking VT 

processes into account) for gas pressures 4 mTorr and 18 mTorr. 

 

From Fig. 6 it is evident that VDFs obtained using full GMNHIS and the RLM are nearly identical 

except for the highest vibrational levels above 12. However, the highest vibrational levels do not 

contribute much into the negative ion production rate [12,16], and, therefore, it is not important to predict 

VDF for these levels accurately. As a result RLM, given by Eq. (5) can accurately reproduce the VDF 

except for the highest vibrational levels above 12.  

In summary, the Vibrational Distribution Function (VDF) is found to be weakly dependent on the 

specific shape of the wall-repopulation probability function   → . This allowed substitution of actual 

  →  to a simple step function 

(1 ) ( )      →
  −= . 
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Having a simple function for   →  allows for analytical solution of a set of linear equations for the 

VDF produced by electron excitation and wall collisions. We apply Reduced Linear Model (RLM) for 

VDF of 
2

H  molecules in Negative Hydrogen Ion Sources (NHIS) at low pressures. The resulting RLM of 

vibrational kinetics for density of vibrationally excited levels 
2H ( )n   is    

2WR, H ( )

1

1
 + .

1
  

 = +

=
+


N

k

k

k n S S  

Here the left-hand side describes the effective volumetric loss (in m-3s-1) of excited molecules at the 

wall surface, 

1
2

WR,

12
=

1th

RV
k

D Av R






−

  +
+  

−  
, and the right hand side describes the effective source, as a 

weighted sum of 
2eV,0 EV,0 H (0)( + )  → →= eS k k n n .  

The obtained analytical solution shows that the density of molecules in vibrational level,  , 
2H ( )n   

is determined by the source rate of electron excitation of ground-state hydrogen molecules to that level, 

and by a weighted sum over source spectrum over higher levels     with a weight of 
1

1 +
. This 

convenient analytical solution can be used as a simple verification test for complex full numerical models. 

We showed that the RLM reproduces well the VDF obtained using the full set of reaction in the 

GMNHIS code, except for the highest vibrational levels at relatively high pressure. The discrepancy for 

the highest vibrational levels is because the process of vibrational-translational relaxation in collisions 

with ground-state 
2

H ( 0) =  molecules is not taken into account in the RLM. However, the highest 

vibrational levels do not contribute much into the negative ion production rate [12,16], and, therefore, it is 

not important to predict VDF for these levels accurately.  
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Appendix A: Derivation of the analytical solution 

In order to solve Eq. (3) of the main text, we introduce the following notation:  
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2WR, H ( )  =g k n , 
N g

G 


 






=

=


 , 
WR,

WR, out







 =
+

k

k k
, and   =T S . 

Under these definitions, 

 1,
1

  




+= −

+
g G G                                                        (A1) 

and Eq. (3) becomes 

 1

+
.

1


  

 


+= −

+
T G G                                                       (A2) 

Eq. (A2) is a two-term recurrence and can be solved by a standard method for such equations. 

Introducing ( + ) ( 1)    = + , we have 1    += +G G T . 

Note that without outflow, 1   and the above equation is already an arithmetic progression. 

Introducing new variables  




=

= 
N

k

k

x G ,  




=

= 
N

k

k

Q T , we obtain 1  += +x x Q . 

The appropriate solution is 
=

=
N

k

k

x Q , or 



==

= 
N N

n k

kn

G Q . 

With the aid of Eq. (A1), we obtain  

2WR, H ( ) 1

11

1 11 1

1

1 1

2 1

1 1

(1 ) 1
=

1 1

=
1

N NN N

n k n k

k kn n

N NN N
k k k

n nN N
k kn n

m m

m k m k

kN

k k n

k n

k n g G G Q Q

T S
T S

S S S

    
  


  

  


   

 

 
 

 

   
  

 
 


   



+

= = += = +

= + = += + = +

= =

−

+ +

= + = +

= = − = −
+ +

 
 + −  

+ = + 
+ + 

  


+ +

+

  

  
 

  .



 

            (A3) 

The second term for  =N , and the third term for 1 = −N  and  =N  should be set to zero. 

In the final form,  

2

1

WR, H ( ) 1 1

2 1

,
1

kN

k k n

k n

k n S S S
     

 


   



−

+ +

= + = +

 
= + + 

+  
   

WR,

WR, out







 =
+

k

k k
, ( + ) ( 1)    = + . 

If outflow is neglected, then 1 = , 1 =  and the RLM solution becomes  
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2WR, H ( )

1

1

1

N

k

k

k n S S  

 = +

= +
+
 . 

Note that to account for the so far neglected VT relaxation in collisions with ground-state molecules, 

one only needs to appropriately modify the value of out out ( ).k k =  
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